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A pseudospectral method based on the vorticity-stream function
formulation is proposed for the solution of two-dimensional, time-
dependent flow of an incompressible fluid. it features the high resohu-
tion and computational economy of Chebyshev collocation and the
combined second-order Adams—Bashforth and Crank-Nicolson time
integration schemes. Precise treatment for the vorticity condition is
accomplished by the use of conditions of integral type. Numerical
gxperiments indicate that the pseudospectral method is capable of
producing results comparable to those obtained by finite differences
with fewer unknowns and is superior in accuracy for the same number
of nodal points. € 1993 Academic Press, Inc.

1. INTRODUCTION

Predicting two-dimensional fiow fields of an incom-
pressible fluid requires the simulataneous solution of the
continuity and momentum eguations with pressure and
velocity components employed as dependent variables.
However, this treatment, known as the primitive variables
approach, suffers the disadvantage that the coupled solu-
tion method leads to exceedingly large numerical computa-
tions, Moreover, difficulties are also encountered due to the
absence of boundary conditions for the pressure. In the
alternative approach based on the vorticity and stream
function as dependent variables, vector identities are used
to eliminate the pressure from the aforementioned set
of governing equations. In this manner, the number of
equations is reduced by one and the complications brought
about by the coupled nature of the equations for incom-
pressible flows is removed. Although the latter approach has
been and is very often preferred, a difficulty still remains
in that the specification of the boundary condition for the
vorticity is troublesome since the no-slip condition at a solid

boundary cannot be translated into equivalent conditions of
boundary-value type for the vorticity. Among the tech-
niques proposed so far to circumvent such a difficulty, the
influence matrix method and the vorticity integral condi-
tions are considered most appropriate in the sense that they
rely on a rigorous mathematical foundation and carry a
physical interpretation.

Regardless of the differences between these two methods,
both necessitates a set of auxiliary functions, to be discussed
later in the paper, for decomposing the vorticity field.
According to our literature survey, the two methods have
been adapted to finite differences [17 and finite elements
[2,3] in the solution of a number of flow problems. In
another branch of numerical methodology, ie., spectral
methods, a study has been conducted to address the issue
of the appiicability of the concepts in conjunction with
Chebyshev approximations [4]. However, this study is
limited to flows within geometrically simple boundaries,
such as flows around cylindrical or spherical bodies, A more
recent account concerning this subject has been the work of
Chaouche an his co-workers [5], where they combined a
pseudospectral scheme with the influence matrix techrique
to investigate the transport of heat and momentum driven
by buoyancy and rotation in an annular domain. To the
best of our knowledge, no one has ever attempted to study
the effectiveness of a direct use of the vorticity integral con-
ditions for solving the Navier-Stokes equations by means of
spectral methods for problems with two nonpertodic direc-
tions. Such assessment is worthwhile because the vorticity
integral conditions could be an alternative option besides
the influence matrix method, particularly in view of the fact
that they bear a unique physical meaning with respect to the
conservation of the total vorticity [17]. Thus, the objective
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of this research is two fold. One is to establish a spectral
framework suitable for the implementation of the vorticity
integral constraints which are a direct consequence of the
Green’s theorem, and the other is to demonstrate the ade-
quacy of the procedure in nonperiodic two-dimensional
flows. In particular, we shall extend the Chebyshev
expansion model of Ku and Hatziavramidis [6] to time-
dependent flows, taking into account the mathematically
sound vorticity constraints. In fact, as pointed out in [1],
any approximation to the vorticity boundary value could
lead to local as well as global discrepancies even for com-
parable calculations.

2. MATHEMATICAL FORMULATION

2.1. Governing Equations

For the two-dimensional motion of an isothermal and
incompressible Newtonian fluid, the flow field at any time
may be calculated by simultaneously solving for the
variables’ vorticity and stream function. These unknowns
are governed by the following system of equations:

f)‘C

8+ VC— v

in 2, (H

Vi =¢{ in £2. (2)
In the vorticity transport equation (1}, the time rate of
change of vorticity is influenced by convection and diffusion
mechanisms whereas the elliptic equation (2) determines the
instantanecus stream function in terms of the vorticity field.
In the above equations, Re is the Reynolds number based
on a characteristic length and a characteristic velocity of the
flow, ¢ is the dimensionless time, u is the dimensionless
velocity vector, { and 3 are the dependent variables
representing the vorticity and the stream function, respec-
tively. The velocity is calculated from the relationship

ay Ay
1= lay-J ox’

(3)
where I and j are the unit vectors in the x and y directions,
respectively. In order to obtain a specific solution to the
above set of equations, we need to prescribe initial and
boundary conditions consistent with the physical nature of
the flow. Generally, these conditions are obtained from
the fact that viscosity causes the flowing fluid to adhere to
the solid surface. This condition, when imposed in the
stream function and vorticity formulation, leads to the two
following boundary conditions:

oy
and Zn o =u,

'f/}ag?:',[’o (4)
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where we have denoted the normal vector as n, the bound-
ary of the flow domain as 9¢2, the relative tangential velocity
as u, which can, for generality, be a function of time, and the
boundary value of the stream function as . In particular,
if the normal velocity on the boundary is zero, v, is an
arbitrary constant and, for simplicity, will be set to zero
hereafter. As far as generality is concerned, both u, and
may depend on time as well as space.

Regarding the initial condition, the stream function and
vorticity are taken to be zero,

(0, r)=0 and £(0,r)=0 in Q, (5)

where r is the position vector. This condition corresponds to
the situation that the fluid is initially at rest.

2.2. Vorticity Integral Conditions

The presence of the no-slip condition, together with the
fact that the boundary of a two-dimensional solid must form
a streamline, creates an unusual difficulty. This is mainly
due to the overspecification of the boundary conditions for
the stream function, whereas no condition for the vorticity
is available. However, the two methods mentioned in the
introduction lead to a way to impose conditions on the vor-
ticity in terms of the boundary values of the stream function
and of its normal derivative. Due to its iterative character,
the procedure proposed by MacKinnon er &/ [3], the
method is not well suited to transient problems; therefore,
we shall follow the method proposed by Quartapelle [1].
The theory behind the derivation of the vorticity integral
conditions is nothing more than an application of the
well-known Green's identity [7, 871,

J (V2 — yV2P) da = [ (qﬂ—n;wa‘ﬁ) (6)

The vorticity conditions can be obtained by choosing ¢ in
(6) to be a function n that satisfies the Laplace equation, i.e.,
V2y = Q. Thus, for the particular case i, =0, one obtains the
integral conditions,

| tnad=] wnas. (7)

Some physical insight can be gained from the above
equation. Of particular importance is the case for n=1,
under which Eq. {7} may be interpreted as follows: The total
vorticity in the system bounded by ¢£2 depends only on the
circulation of the velocity along the periphery of the flow
domain. Coming now to a spatially discrete version of the
problem, it is immediate to see that there are as many #
functions as the number of boundary points [1]. By
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following this argument, each #, satisfies the Laplace
equation with a value of zero everywhere along the bound-
ary except at one grid point where the value is one. This
statement is equivalent to

Vz’?i:O: ’?rla.o:a:j’ (8)
for i, j=1, 2, .., NS, where NS denotes the totai number of
nodal points located on the boundary. Note that 8, is the
usual notation representing the Kronecker delta.

3. METHOD OF SOLUTION

In the past, numerous versions of spectral methods have
been constructed in the form suitable for the calculations to
be carried out in either spectral space, physical space, or
both by means of FFT (fast Fourier transform, of which
Chebyshev is a special case) [9, 10]. Particularly attractive
for the present work is the formuiation due to Ku and
Hatziavramidis [6] who, in the context of Chebyshev
collocation, devised a matrix multiplication technique
capable of calculating the first and second derivatives of a
function in physical space. While such calculation using the
direct method requires N > multiplications, the same can be
achieved in N log,(N) operations by FFT. Depending on
the computer, the matrix maultiplication method is more
efficient for small ¥ with the crossover point being some-
where between 16 and 64 which is sufficient to provide ade-
quate resolution to the test problems to be considered in the
next section. Based on this consideration, they introduced a
new spectral model which does not require the FFT.

3.1. Chebyshev Expansion

As a first step toward our ultimate goal, we shall review
the methodology of evaluating derivatives of a function, say
fx), with xe[—1,1]. The value of the function at the
Gauss-Lobatto points {x;, i=0,1,2,.., N}, defined as
cos(in/N), are given by

N

Si=flx)= Z ajj}(xl')s

i=0

9)

where T is the Chebyshev polynomial of order j. In matrix
notation, it becomes

f=Ta. (10)
For convenience, both matrix and series notations will be
used interchangeably throughout. Provided f is differen-
tiable, the first derivative of f at the collocation points can
be computed numericaily from the expression:

f'=Ta'", (11)
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where a superscript (1) has been used to denote first
derivative coefficients. The matrix T in Eqs. (10) and (11) is
the (N +1!)x(N+1) square matrix with the following
entries

(12)

By taking advantage of the recursion formulas con-
cerning derivative of Chebyshev polynomials as given in
most standard texts on special functions, it is possible to
deduce the following relationship:

a=GWa, (13)
where G‘'! is by definition the first derivative matrix.
The components of G'* can be shown to be

izjori+jeven
7 ) +J (14)
otherwise

o {"*

R VA Wi DO
and the constant C, takes on the value of two if / equals zero
and one otherwise. Since T is nonsingular, its inverse exists
and so does the inverse Chebyshev transform. This property
allows us to rewrte Eq.(11) in a form free of spectral
coefficients, i.e.,

f =TGUTf

=G, {15)
where a hat is used to indicate the inverse transform of the
corresponding operation. In a simiiar fashion, the equation
for the second derivative can also be derived to give

" =TGUGUTf

=GOf. (16)
For completeness, the ith row and the jth column entry
of the inverse transform of T may be given in closed form as

. 1
7.

= m Tix)),

(17)

whereas values at other locations can be obtained
accordingly. It is worthwhile to note that the steps leading
to Eq.(17) primarily involve the utilization of the
orthogonality properties of Chebyshev polynomials. 1t is
now apparent that the derivatives of a function obeying the
differentiality criteria can be computed accurately and
efficiently without the need of a fast transform.

3.2. Spectral Representation of the Flow Equations

As one may recognize, the task of converting the vorticity
transport equation and the stream function equation to
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spectral form is now trivial. Indeed, by substituting
appropriate spectral expressions for the derivatives, the
governing equations can be rewritten as

di; s 117y
dt + Re[ z

i'=0

SIS TRl ()

k=0

NY B
ikt Z Gyﬁc)’l!’i.k’ = Cr‘,ka

k=0

NX

T GEY (19)
i'=0

in which (NX + 1) and (NY + 1) are the numbers of colloca-
tion peints in the x and y directions, respectively, Note that
{.x and ¢, are physically meaningful guantities, not
spectral coefficients, associated with the point (x,, y,). For
ease of simplifying the notation, the spectral expression of
the convection term has been abbreviated as &, . Explicitly,

it represents
][ z GX“)CT k]
i"=0

£ ) o

z Gy(l)

lk_"!:
k=0

¥ oxw

i'=0

Y GYY

where GX and GY are the derivative matrices with respect
to x and y, respectively. They are defined exactly the same
way as G and are, in fact, identical if NX = NY.

3.3. Time Discretization

Perhaps, one of the most popular schemes suited for
integrating the time evolution equation (18) is the combined
algorithms of Adams-Bashforth and Crank-Nicolson. Such
combination, when applied properly, would lead to an
effective scheme of second-order accuracy. If the nonlinear
convection and viscous diffusion terms are treated by the
former and the latter respectively, there results two linear
systems:

NY -
S Gr@ 21)

k=0

2{5 Z GX(Z]C"+1

F:k’
At o

Z Gx(Z) n+1+ 2 GYuJ n+1_CZ;1, (22)

i'=0 =

where Ar is the time increment and the superscript n
indicates the time level. Since this combined scheme is not
self-starting, the convection term is treated differently at the
first time level and in a fashion that preserves consistent
accuracy. The right-hand side of Eq. {21) can be expressed
in a compact form as

=2 T R Y TR
At P'=0 k=0
/!

—2Re {NEI‘“, n=0,

] (23)
LSN", —05N,  n#O.
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As is indicated in Eq. (23), all the nodal values are readily
available from previous time steps; hence the combined time
differencing technique treats the nonlinearities in the vor-
ticity transport equation in an explicit manner. It is also
worthwhile to peint out that the left-hand side of Eqs. (21)
and (22) are linear and unchanged with time; thus each can
be factored into upper and lower matrices once and for all.
After the factorization, only backward and forward sub-
stitutions are needed for the solution to advance from one
time level to the next.

3.4. Vorticity Decomposition

In steady flow, Eqgs. (21) and (22) can be solved and the
satisfaction of requirement (7} can be reached by an
iterative procedure. However, this procedure is not feasible
for transient flow problems due to the large number of
iterations involved. In view of the theory of linear partial
differential equations, we assume the vorticity as a linear
combination of a set of guxiliary functions as

NS
C=w+ Z q,w (24)

i=1

where {¢;,j=1,2,. NS} is a set of decomposition
coefficients to be determined in such a way to ensure the
vorticity integral conditions be satisfied. Also each member
of the set {w’ j=1,2,.,NS} is the solution of the
Helmholtz equation,

ZR ) NY
R = Y GXPwh~ T GF G

I'=0 kK=0

1.=0, (25)
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subjected to the Dirichiet boundary conditions,
W) 22 = B ims (26) condition,
for j,m=1, 2,.., NS In contrast to the rest of w/, the

remaining auxiliary function w® is the solution of the
nonhomogeneous problem (21),

w0 =0.
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in conjunction with homogeneous Dirichlet-type boundary

(28)

Upon substitution of Eq. (24) into the vorticity integral

WRe , & GR w0 conditions (7), there results a system of linear algebraic
_ZLVi’k_f'go i Wik equations,
NY NS )
~ Y GP@w=F,, (27) y qjj ! dA = | n,,,w”dA+J w4, dS, (29)
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FIG. 2. Velocity vector for Re =100: (a) r=0.1; (b) r=1; (c) t=10; (d) + = 40.
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which can easily be solved for g/'s. Inspection of Eq. (29)
also reveals that time dependence only occurs in the right-
hand side, and therefore the LU factarization of the matrix
can be done once and for all at the beginning of the calcula-
tion. To end this discussion, it is remarked that the integrals
in Eq. (29) are evaluated by the trapezoidal rule in all the
calculations to be presented in the subsequent section.

4, RESULTS AND DISCUSSION

Although the main focus of this article is the solution of
the Navier-Stokes equations, the application of a mixed
time differencing technique has led to a series of Helmholtz
and Poisson equations to be solved. Due to the couplings
between the stream function and vorticity in the convective
terms, numerical assessment is difficult. To simplify our
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FIG. 3. Time variation of velocity for Re = 100: {(a} w-velocity along
y-axis; (b) v-velocity along x-axis.
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task, it is sufficient to consider the Helmholtz equation,
defining on a unit square, ie., x, y€ [0, L1 x [[0, L] of the
form
e '@
—+—-S+a0=0,
Ox

pE (30}

subjected to the boundary conditions: @0, y)=@(L, y)=
&(x, L)=0, and &(x, 0)= 1. As can be seen from Eq. {30),
Poisson equation is recovered when o = 0. The justification
for choosing this test problem is the fact that analytical
solution is available [11]. Furthermore, it has some
features similar to the driven cavity problem we are going
to consider in order to assess the capability of the proposed
method.

To examine the capability of the Chebyshev expansion
method, Eq. (30) is solved for a number of different grids
with an equal number of unknowns in both directions by
spectral and finite difference methods. Fig. 1 is the result of
our convergence study where the maximum norm of the
error is plotted against the number of degrees of freedom
used. From this figure, the linearity of the spectral curve
implies that the truncation error associated with Chebyshev
expansion decreases exponentially. On the contrary, the
rate of convergence of finite difference method shows little
sensitivity with respect to the number of nodal peints. These
behaviors demonstrate that log ||Exact — Numerical| , is
propertional to & for Chebyshev collocation, and to log{N)
for the traditional finite difference method. Much of the dis-
cussion here is also applicable to the finite element method
as well, because both finite difference and finite elements
exhibit the same type of convergence behavior. With regard
to accuracy, the pseudospectral method is superior to the
traditional methods; however, such an attractive feature is
gained at the expense of a large computing time. This con-
clusion may be substantiated by the following considera-
tion: For a fixed level of accuracy, say 0.01, the spectral
method required five collocation points, whereas the finite
difference method needed 20 nodes in each direction, includ-
ing those at the ends. Provided that the preprocessing work
is the same for both methods, which is likely to be the case
in many problems, the overall computing expense is essen-
tially the cost of solving a system of equations. For this
problem, the size of the matrix to be inverted for the spectral
method is 9 x 9 and it is 324 x 324 for finite difference, but it
should be kept in mind that the latter is banded, whereas the
former is full. Depending on the linear system solver that
one uses, this information can be directly related to the com-
putational cost. In this particular example, the computing
time associated with spectral analysis is likely to be less than
the finite difference approximation; however, it increases
very rapidly with increasing the number of collocation
points. In many problems, transition and turbulent flows,
for instance, the success of a numerical scheme may not be
entirely measured by the level of intensiveness of the com-



VORTICITY INTEGRAL CONDITIONING

putation, but by the accuracy and the spatial resolution
capability as well. Therefore, the proposed scheme would be
useful tool for modeling such flows.

In the remainder of this section, we shall apply our
formulation to an internal flow in a square cavity generated
by a moving lid. The cavity, centered at the origin of the x-y
coordinate system, is bounded by rigid and impermeable
side walls of equal length, 2L, with the upper surface
covered by a lid whose motion is constrained in the direc-
tion from left to right and parallel to the horizeontal x-axis.

_meEe N T ——
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This problem has been used from time to time for numerical
assessment of finite differences {127 and finite elements
['13]. In recent years, it has become a2 popular test case to
appraise the spectral schemes [14,15] because of the
singularities in the flow that have significant impact on the
numerical properties of the algorithm. As noted by Schultz
et al. [ 147, the existence of the corner singularities hurts the
exponential convergence character of spectral methods, and
therefore the driven cavity flow would serve as a good
model problem to evaluate the performance of spectral
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FIG. 4. Vorticity contours for Re =400: (a) r=75; (b) 1 = 10; {c) + =40.
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schemes. Unlike the studies of Schultz er /. [14] and Shen
[15]. where cither a trick or an approximation to the
boundary conditions was used, the proposed approach
treats the problem in a mathematically exact and consistent
manner.

Figures 2 are a series of velocity vectors depicted at four
different times (¢ =0.1, 1, 10, and 40) for Reynolds number
100. Once the lid moves, a thin layer next to it is set in
motion because of the viscous actions, and within that zone
the velocity changes rapidly. As the right wall is reached, the
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flow redirects itself in a fashion compatible to a corner, and
this process is repeated at the other corners as weil. The
ultimate result 15 a complex vortex system whose structure
changes continuously in time until its center finds an equi-
librium position. Temporally, the flow at an early stage is
very much confined in the region near the Hid and the flow
field is nearly symmetrical about the y-axis (see Fig. 2a),
Subsequently, that region expands rapidiy as illustrated in
Fig. 2b at t=1, where the entire cavity has already sensed
the movement of the lid. If sufficient time is allowed for the

FIG. 5. Late-time stream [unction contours: (a) Re = 100; (b) Re = 400; (c) Re = 1000,
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system to become fully developed, recirculation zones or
secondary vortices form at the lower corners. Because the
velocity there is so low, they are hardly distinguished from
the primary vortex in the velocity vector plots, but they
are visible in the contour plot of the stream function as
exhibited in Fig. 5a.

To further investigate the extent to which the motion is
induced to the inner region, we present the evolution of the
velocity associated with Re= 100 along the line passing
through the geometric center at various times. In Fig. 3a,
the horizontal velocity along the p-axis clearly indicates the
presence of a thin boundary layer which grows in time. The
vertical velocity, Fig. 3b, on the other hand, shows three
distinct regions consisting of boundary layer flows near the
walls separated by a core within which an inflection point is
seen. As an aid to our understanding of the viscous flow
phenomena, the time development of the vorticity at times
t=5, 10, and 40 for Re =400 (Fig. 4) are plotted to show
the change of the vorticity structure as the vortex system
develops. Also apparent in these contours are the strong
singularities at the upper corners where vorticity is not
unique and is, in fact, multivatued.

Figures 5 illustrate the steady-state flow patterns by
stream lunction contours for Reynolds numbers of 100, 400,
and 1000. In respective order, these results correspond to
t =40, 50, and 60 dimensionless time units. To assure that
those are the time-invariant results, the solution is advanced
continually until the relative change between the solutions
of two consecutive time levels is within 0.0001 at every point
in the flow domain. Attempts have been made to present our
spectral results in parallel with those predicted by Ghia et al.
[127, but the graphics are not legible for quality reproduc-
tion and are therefore not included here. In general, the
basic flow structure for all three cases are comparable to
those of Ghia er al. [12] which were obtained by a multigrid
finite difference method with very fine meshes (129 x 129).
Because of the adequacy of their solution algorithm and the
spatial resolution, their solutions have been considered as
benchmark results in the CFD community, In order to
provide a quantitative comparison, Table I tabulates the
data of the location of the main vortex center for Re = 100,

TABLEI

Location of the Primary Vortex Center

Present Ghia et al. [12]

Re x ¥ x ¥
100 0.24 0.47 02344 0.4688
400 (.11 0.21 0.1094 02110
1000 0.06 0.12 0.0626 0.1250
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400, and 1000. As demonstrated in the table, the two
predictive techniques agree quite well.

As an additional verification of our simulation results,
comparison is carried out with respect to the horizontal
velocity along the y-axis and the vertical velocity along the
x-axis with the published data of Ghia et a/. [12] in Figs. 6a
and b, respectively. Again, the figures reveal exceptional
agreement between the two solutions. It should be remarked
that our solutions were based on a 21 x 21 grid for Re = 100,
a 31 x 31 grid for Re =400, and a 31 x 31 grid for Re = 1000,
while those of Ghia and his co-workers were all based on
129 x 129 points. It is appropriate to point out the trend in
these curves, that as the Reynolds number increases, the
region where rapid change in velocity takes place becomes

1.2
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-------- Re = 400
0989 me--- Re = 1000
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FIG. 6. Velocity comparison: (a)
(b) v-velocity along x-axis,

u-velocity along  y-axis;
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smaller and smaller. This is consistent with the boundary
layer theory which had predicted the layer thickness to be
on the order of the inverse of the square root of the
Reynolds number.

On the basis of the above findings, it is concluded that the
proposed procedure yields results comparable to those of
conventional techniques with a much smaller number of
unknowns because of better spatial resolution. In addition,
the vorticity integral condilions can be implemented with
full benefit for an accurate simulation of unsteady flows.
When the conditions are employed in conjunction with a
spectral discretization in space and the Adams-Bashforth/
Crank-Nicolson approximation in time, an efficient non-
iterative scheme for this kind of problem is obtained.
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